矩形是生活种常见的平面图形,是长方形的一种,它的四个角都是直角,同时两组对边分别相等。矩形也叫长方形,是一种特殊的平行四边形,正方形是特殊的矩形。
矩形的性质
1、对边平行且相等,对角相等,邻角互补,对角线互相平分;
2、四个角都是直角;
3、对角线相等;
4、具有不稳定性,易变形。
矩形的常见判定方法
1、有一个角是直角的平行四边形是矩形;
2、对角线相等的平行四边形是矩形;
3、有三个角是直角的四边形是矩形;
4、在同一平面内,任意两角是直角,任意一组对边相等的四边形是矩形;
5、对角线相等且互相平分的四边形是矩形。
公式
面积:S=ab(注:a为长,b为宽)
周长:C=2(a+b)(注:a为长,b为宽)
正方形判定定理
1:对角线相等的菱形是正方形。
2:有一个角为直角的菱形是正方形。
3:对角线互相垂直的矩形是正方形。
4:一组邻边相等的矩形是正方形。
5:一组邻边相等且有一个角是直角的平行四边形是正方形。
6:对角线互相垂直且相等的平行四边形是正方形。
7:对角线相等且互相垂直平分的四边形是正方形。
8:一组邻边相等,有三个角是直角的四边形是正方形。
9:既是菱形又是矩形的四边形是正方形。
平行四边形
平行四边形,是在同一个二维平面内,由两组平行线段组成的闭合图形。平行四边形一般用图形名称加四个顶点依次命名。注:在用字母表示四边形时,一定要按顺时针或逆时针方向注明各顶点。
在欧几里德几何中,平行四边形是具有两对平行边的简单(非自相交)四边形。 平行四边形的相对或相对的侧面具有相同的长度,并且平行四边形的相反的角度是相等的。
相比之下,只有一对平行边的四边形是梯形。平行四边形的三维对应是平行六面体